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Abstract 

The Camassa-Holm equation is shown to give rise to a geodesic flow of a certain right invariant 
metric on the Bott-Virasoro group. The sectional curvature of this metric is computed and shown 
to assume positive and negative signs. 
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1. Introduction 

In [OK] Ovsienko and Khesin showed that the solutions to the periodic Korteweg-de 
Vries equation can be interpreted as geodesics of the right invariant metric on the Bott- 
Virasoro group which at the identity is given by the L’ inner product. Below we show that an 
analogous correspondence can be established for another completely integrable nonlinear 
partial differential equation recently introduced by Camassa and Holm [CH] 

at11 + zK&U - a.:&U + %4&U - 2a,U&I - L4a:Lf = 0. (1.1) 

where K is a constant. Camassa and Holm derived this equation indirectly using an asymp- 
totic expansion in the Hamiltonian of the Euler equations of hydrodynamics. The equation 
describes the motion of shallow water waves. The global well-posedness of the initial value 
problem for (1.1) is not yet fully understood, although it is known that for some initial 
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conditions its solutions develop singularities in finite time (see [CH] or [CHH]). The inter- 
pretation given below of (I. 1) as a geodesic equation on the Bott-Virasoro group may bring 
in some additional insight into the existence problem for this equation. 

2. Metric and its geodesic flow 

We proceed to describe the necessary background. Let D’(S’) be the group of orientation 
preserving diffeomorphisms of the circle which are of Sobolev class H’ and let VectS (S’ ) = 
T,V’(S’) be the corresponding Lie algebra of HS vector fields on S’. Throughout we 
assume s to be sufficiently large so that ZY(S*) can be equipped with a structure of an 
infinite-dimensional manifold and our formal computations can be rigorously justified. 

Recall that the Bott-Virasoro group 3 (St) is the non-trivial central extension of DY (S’) 
with the group operation given by 

;ior= no,$,ff+B+ 

(_ 
s 

log&(rlo~)dlog&~ 3 

i 

(2.1) 

S’ 

where ;i‘= (n, cr), { = (<, B) with q, 6 E D’(S’) and (Y, /l E R and where the term given 
by the integral is a 2-cocycle on D’(St) computed by Bott [B]. 

Further, recall that the corresponding Virasoro algebra, Vxt”(S’), is the non-trivial cen- 
tral extension of VectS(S’). The general 2-cocycle, determining this extension, was found 
by Gelfand and Fuchs [GF] (see also [PS, Section 4.21). The commutator in the Virasoro 
algebra is given by 

[F, @I = - 

where 

(2.2) 

v^= (+>. i?= (w-$;b) withu, b E R and u$, w$ E T,D”(S’). 

The minus sign in the formula above makes it the correct choice for a bracket in the Lie 
algebra of right invariant vector fields on the group. 

On the Virasoro algebra consider the H’ inner product 

(I? @,,I = 
s 

a,rva,w dx + 
s 

uw dx + ab, (2.3) 

s’ S’ 
A A 

where V and W are as above. Extend (2.3) to a right invariant metric on the Bott-Virasoro 
group by setting 

(V, W@ = (d$_, V, d&, W),I (2.4) 
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for anyr E F(S’) and e, @ E TiI%(S’) and where Ri : c(S’) + s(S’) is the right 

translation by r, Ri (3 = F o t. An explicit formula for the derivative. d; Ri_, , can be 
obtained from (2.1) (cf. [M2]). 

Our main result is as follows. 

Theorem 1. Let t + T(t) be u curve in the Bott-Virawro group starting ut F(O) = (P, 0) 
in the direction $0) = (u, &, aO). Then F is a geodesic of the H ’ metric (2.4) if und onl? 
(fthepoir (v(t)&.u(t)) = deR;,-l?(f) satisfies 

b$Yth a(O) = a,, and v(0) = vO, 

Remark 1. It is readily seen that, for a suitable choice of a constant c, the substitution 
u + u +c transforms the second of the equations in (2.5) into the Camassa-Holm equation 
(1.1). 

Proof of Theorem 1. First recall the following fundamental result about geodesic flows on 
arbitrary Lie groups. 

Proposition 1. Let G be a (possibly inJinite-dimensional) Lie group equipped with o metric, 
(.. .) which is invariant under right translations R, : G + G, R,(h) = 11 g. A curve 
t -+ y (t ) in G is a geodesic sf this metric if and only lf u (t) = d, Ry,- I i (t ) .scrtisfie.r 

(2.6) 

bchere ad;T is the adjoint of adl, with respect to the metric (. . .), that is ,for m7y ~1, u and 
u’ E T,>G 

(ad,Tv, w), = (v, [u, WI),. 

The proof of Proposition 1 can be found in [A, Appendix 21 or [MR, Section 13.81. 

Remark 2. Eq. (2.6) is sometimes called the Euler-PoincarC-Arnold equation. In its equiv- 
alent formulation on the dual Te*G it is known as the Lie-Poisson equation. 

We shall show that Eq. (2.5) is precisely the Euler-Poincare-Arnold equation on the 
Virasoro algebra Gt”(S’) associated with the H’ inner product (2.3). Given any 

v^= (vA.a). @= (w$.b), ~?=(u~,r> in IZt”(s’). 
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one computes from (2.2) and (2.3) 

($@, UIJH1 = (@. [V. UI])HI 

=- 
s 

a,u&(ua,u - ~la.,u) dx - 
s 

w(ua.,~1 - ua,u) dx 

S’ s’ 

- /bv(a:u +a,u)dx. 

s ’ 

Integrating by parts and using the fact that the functions u, w. ~1 are periodic, this expression 
can be written as 

J u(-t@w - 2a.,ua_zw + ua,w + 2uaYu + ba.$ + ba,u) dx 

s ’ 

= 
s 

U(I - a,$(1 - a,“)-’ 

s’ 

x {-ua.:w - 2a,Yua_:w + ua,u) + 2wa,u + ba:u + ba,ul dx, 

from which we obtain the formula for the coadjoint operator 

Nd; @ = ((I - a_:)-’ 

x {-t@w - 2a.YVa,:w + ua,w + 2wa,u + ba$ + ba.,u$. 0 . 

(2.7) 

Let q(r) be the geodesic described in the statement of Theorem 1. Using (2.6) and (2.7) we 
now obtain the corresponding Euler-Poincare-Arnold equation 

a,a = 0, (I - a_:)a,u = ua_,‘u + 2a.,ua,;u - 3ua,u - rra,:u - ua,Lj, 

and Theorem 1 follows from Proposition 1. 0 

3. Sectional curvature 

Without much extra effort it is possible to write down an expression for the sectional 
curvature of the metric (2.4). Observe that since by construction right translations preserve 
the metric it is sufficient to do the computation at the identity 

F= (e. 0) 6 S(S’). 

Theorem 2. The sectional curvature at the identity in an arbitraq two plane detrmined by 
a pair 
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is given by 

(3.1) 

Proc$ This is just an extended exercise in integration by parts using (2.7) periodicity and 
the standard formula for the curvature at the identity of a left invariant (and therefore right 
invariant) metric on a Lie group 

(R(p, @)@. p)H, 

n 

Note that the curvatures in (3.1) can take on both signs. As expected, the sectional 
curvature in the plane containing an element from the centre of the algebra is non-negative 
and a straightforward inspection shows that for V = (0, a) and W = (cos 2x$. 0) it is in 
fact positive. On the other hand we have: 

Corollary 3. Let 

v^ = (sinkrk. 0) and G = (coskx~. 0). 

the17 

(R@. @,i?, p)H, 

nk’ 

= 4(1 +4/S) 
(8 - 3x - (8 + 6r)k7 + (2 + 2lrr)k” - 12rk6). 

Therefore if k > 2 the sectional curvature is strictly negative. 
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Remark 3. The formula given in Theorem 2, though a bit lengthy, allows one to study 
directly the behaviour of geodesics of the metric (2.4) on the Bott-Virasoro group and 
therefore indirectly, by Theorem 1, solutions of the Camassa-Holm equation. It would be 
of interest for example to investigate its possible relevance for the stability problem of the 
initial value problem for (1.1) as in the case of the Euler equations of hydrodynamics (cf. [A] 
or [Ml]). 

Remark 4. From the computations presented above it follows that the particular case (K = 

0) of Eq. (1. l), also studied in [CHH], can be interpreted as a geodesic flow on just D(S’) 
of the metric which at the identity is H' . 
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